
[54]	POSITION	LOCATOR
[75]	Inventor:	Earnest R. Harrison, Glen Burnie, Md.
[73]	Assignee:	Westinghouse Electric Corporation, Pittsburgh, Pa.
[22]	Filed;	Jan. 15, 1973
[21]	Appl. No.:	323,592
[52]	U.S. Cl	
[51]	Int. Cl	G06g 7/78, G01c 21/16
[58]	Field of Se	arch 235/150.2, 150.25, 150.27; 432; 33/324–326, 355–357, 361, 366
[56]		References Cited
	UNIT	TED STATES PATENTS
3,355, 3,545, 3,654,	266 12/19	70 Wilson 235/150.25

Primary Examiner—Felix D. Gruber Attorney, Agent, or Firm—D. Schron

[57] ABSTRACT

A system for determining the course of travel of a carrier or wearer of an apparatus comprised of a pair of sensor arrays adapted to vectorially measure the earth's gravity and magnetic fields as well as the movement of the carrier which may be for example a human wearing the sensor apparatus on his leg. Analog signals representative of these vector quantities are fed to the system which includes vector operation circuitry for performing a double integration to determine the distance traveled in three coordinate directions corresponding to the orthogonal axes of the sensor apparatus while the sensor assembly is moving and thereafter performing a coordinate transformation to provide readouts corresponding to the North, East and vertical coordinates when the sensor apparatus is stationary.

9 Claims, 10 Drawing Figures

